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APPENDIX. THE RANGE OF THE EXCHANGE 
POTENTIAL 

There has been some uncertainty as to what quantity 
should properly be called the range of the exchange 
potential in the case of the scattering of two unequal 
mass particles, such as wN scattering. The discussion in 
Sec. II clarifies this situation. 

It will be seen from expressions (2.12) and (2.13) 
that the absorptive parts in the t and u channels having 

I. INTRODUCTION 

IT has been observed by Liiders1 that density fluctua
tions in the BCS model of a superconductor violate 

a standard result of statistical mechanics (Sec. 2, Sec. 3). 
The difficulty is analyzed here. It is found to be resolved, 
at least for zero temperature, by those same improve
ments of the theory which lead to a gauge-invariant 
Meissner effect (Sec. 4, Sec. 5). A new derivation of the 
standard theorem is given (Sec. 6). 

n. THEOREM 

Consider an infinite homogeneous system in thermal 
equilibrium, specified by temperature T and chemical 
potential M- The two-particle correlation function is 
defined by 

G(x-y) = (p(x)p(y))-(p(x))<P(y)), (1) 

where p(x) is density at position x, and brackets ( ) 
denote thermal averaging. The standard result2 is that 

C dP 
dxG(x) = kT—, (2) 

J dn 
where p is mean density. An equivalent statement is 
that in a large subvolume & the fluctuation of particle 

* Permanent address: CERN Geneva. 
1 G. Liiders (unpublished). 
2 See for example L. D. Landau and E. M. Lifshitz, Statistical 

Physics (Pergamon Press, London, 1958), p. 365. 

the same value of the integration variable %' super
impose each other. Now xf—t for / absorptive parts 
and x'=u— (m2—l)2/s for u absorptive parts. Hence 
the range of the exchange force arising from the ex
change of mass \/u is [u— (m2— l)2/s]~1/2 in the sense 
that (t)~* is the range of the direct force arising from 
an exchange of mass \/t in the / channel. Unlike the 
direct force, the range of the exchange force is energy 
dependent and gets smaller as the energy gets larger. 
In particular, the exchange of a single nucleon gives 
rise at low energies to a force of range of approximately 
(2m)~1/2 and approaches the naively expected range 
(m)~l only at very high energy. 

number 

N'= [ dxP(x) 

is given by 

(N'2)- (N')2= tfkT(dp/dn), (3) 

or with a different form of the right-hand side 

{N'*)-{N'Y=ttpkT{dp/dp), (4) 
where p is pressure. 

The usual argument is that for large enough Q' one 
can ignore interaction across the dividing surface with 
the remainder of the system. The latter is treated merely 
as a reservoir of particles. The subsystem in 0' is then 
represented, to some unspecified degree of accuracy, by 
a grand canonical ensemble. Equation (3) is readily 
derived, and (2) follows from it. 

The theorem has been stated for an infinite system. 
In formal discussion one considers first a large but finite 
system, of volume 0. We then use the conventional 
periodic boundary conditions, so that the quantity on 
the right-hand side of (1) remains a function only of 
(x—y). It is essential that the limit fi—» oo is taken 
before the integration in (2) is performed. It is easily 
seen that the quantity 

lim / dxG(x) 

is ensemble dependent. In fact, it is proportional to the 
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mean square fluctuation in total particle number, zero 
for the canonical ensemble but not for the grand canoni
cal. This ensemble dependence arises through terms in 
G of the type (constant/0), which do not, however, 
contribute to 

/ 
dx lim G(x). 

Q-*oo 
(5) 

It is a consequence of the theorem under discussion that 
the order of integration and limit can be interchanged 
for the grand canonical ensemble, but this is not trivial. 

Because the exponential factor improves the con
vergence of the integral, it is plausible that with k?^0 

/ • 

dxe~ik'x lim G(x)=lim G(x). 

Denoting by <3(k) the Fourier transform of G, the 
theorem can then be restated as 

dp 
lim{lim<3(k)} = &:r—. 
k-0 0 — ^ 

(6) 

In this form it has considerable importance in scattering 
problems.3 

III. BCS MODEL4 

We are not concerned here with complications arising 
from Coulomb forces, electron lattice interaction, etc. 
We consider only the simple model in which spin-| 
particles interact through local potentials of finite range. 
In second quantization, the density is given in terms of 
field operations by 

p(x) = *it(x),fc(x)+fct(x)*,(x), 

where suffices indicate spin states. With periodic 
boundary conditions on the total volume 0, we have 

^i=Z*«(*)»" iyVk-*, 

*2=L*&(*)0-1/Vk"x. 

The particle absorption operators a and b are in turn 
related to Valatin-Boguliubov5 quasi-particle operators 
a and ($ by 

a(k) = «(k)o(k)+i;(k)^(-k), 

5(k) = w(k)^(k)-Kk)« t(~k), 
where 

|«(k)|*+|t>(k)|«=l. 

About the function u and v we need only note here that 
3 See for example the reviews of J. de Boer, Reports on Progress 

in Physics (The Physical Society, London, 1948-49), Vol. 12 and 
L. Van Hove and K. W. McVoy Nucl. Phys. 33, 468 (1962). 

4 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957). 

5 J. G. Valatin, Nuovo Cimento 7,843 (1958). N. N. Boguliubov 
ibid. 7, 794 (1958). 

v approaches zero above the Fermi surface, and unity 
below it; only in the transition region are both u and v 
substantially different from zero. The ground state is 
taken to be the vacuum of quasi-partides. For finite 
temperatures a noninteracting Fermi gas of quasi-
particles is supposed. In either case expectation values 
of products of field operators can be evaluated by Wick's 
pairing theorem or its generalization.6 

Then 

G( i -y )=E{W(x^(xW(y)*y (y )> 

-W(iW(y)>Wx)fe(y))} 

= E{W(x)^-(y))M(x-y) 

-W(x)^(y))W(y¥,(x)> 

+W(xW(y)Xf i (y^W>}, 

where first the pairing theorem and then the anticom-
mutation rules have been used. Finally5 

G(x-y) = p 5 ( x - y ) - 2 | ^ ( x - y ) | 2 + 2 | x ( x - y ) | 2 , (7) 

where 
A(x-y) = W(y)^1(x)>=<^t(y)^2(x)>, 
x(x-y) = ^1(y)^2(x))=-^2(y)^1(x)) . 

The Fourier transforms of h and % can be expressed in 
terms of u and v: 

%(k) = (at (k)a(k)> = M 2{ 1 - / } + M 2 / , 
x(k) = <a(k)6(-k)) = M (k>(k){2/- l} , 

where /(k) is the occupation probability for quasi-
particle states of momentum k. Note that 0 ^ / ^ 1 and 
/—> 0 as T —> 0. The Fourier transform of G can then 
be computed, and one obtains7 

lim{limG(k)} = 2 / 
k-*0 Q-*oo J 

dk 

{ / [ ! - / ] + | H 2 ( l + [ l - 2 / ] 2 ) } . (8) 

For an ideal gas ^ = 0 . It is then readily verified that 
(8) has the value (6). But when pairing is introduced 
the theorem is no longer satisfied. To see this it is 

6 C. Bloch and C. DeDominicis, Nucl. Phys. 7, 459 (1958). M. 
Gaudin, ibid. 15, 89 (1960). 

7 It happens that the order of limits does not matter here. It 
would matter, in the ground-state (T=0) problem, for example, if 
the BCS wave function were replaced by its projection on to a 
definite particle number. However, with the limits taken in the 
proper order the result should not depend on such a change. This 
is confirmed in the particular case of the so-called strong coupling 
model, by work of Mittelstaedt (to be published). 
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sufficient to note that (8) does not behave as required 
as T—->0. The pairing does not much change p as a 
function of /*, and in particular (kTdp/dv) still goes to 
zero at zero temperature. But the \uv\2 term of (8) 
remains finite when T —* 0, i.e., when /—> 0. 

IV. REDUCED HAMILTONIAN 

We have to revise either the statistical mechanical 
argument or the BCS model. It is first necessary to 
dispose of the fact that, according to Bogoliubov8 the 
BCS method gives essentially the exact solution for the 
so called "reduced Hamiltonian." The "reduction" 
process is the following. Start with, say, an ordinary 
local interaction energy 

{ J ( X ) ) = - p A ( x ) - E ( £ o - £ n ) - 1 

n?*0 

w dxdy ^ (x)^1" (y>(x- y)^2(y)^i(x). 

In the Fourier decomposition 

kik2 

drop all terms with nonzero total momentum (ki+k2). 
In configuration space the resulting reduced interaction is 

20 J 
dxdydz^1t(x+z)^2+(x+z)Hx-y)**(y)*i(x). (9) 

Now this interaction picks up a pair of particles in one 
region of space and takes it equally to any other region 
without respect for distance. So one certainly cannot 
regard any subvolume of the system as even approxi
mately isolated. The failure of the standard theorem 
with the reduced Hamiltonian is therefore no mystery. 
Moreover, because of the unphysical nature of the re
duced Hamiltonian, any result which depended essen
tially on its existence and solubility should not be 
trusted. 

V. MEISSNER EFFECT, AND THE 
ZERO-TEMPERATURE CASE 

The nonlocality of the reduced Hamiltonian was the 
cause of an earlier difficulty in the BCS theory, the lack 
of gauge invariance for the Meissner effect.9 It turns out 
that this is closely connected with the present problem. 
We consider here only the case of zero temperature, i.e., 
the ground state. 

In the presence of a vector potential A the current 
has the form 

J(x) = j(x)-P(x)A(x), 

where j does not depend explicitly on A. To first order 
in A the expectation value of the current is 

8 N. N. Bogoliubov, Suppl. Physica 26, 1 (1960). 
9 P. W. Anderson, Phys. Rev. 110, 827 (1958); 112,1900 (1958): 

G. Rickayzen, ibid. 115, 795 (1959). 

x { ( 0 | j ( x ) | ^ | J j y j ( y ) A ( y ) | o ^ 

^o | J jy j (y )A(y) | ^ | j (x ) | 0 ) J . (10) + 
If for the ground state |0) and excited states \n) the 
states of BCS theory are used, the last two terms are 
found to be negligible for slowly varying fields A. One 
finds then simply 

<J(x)>=-PA(x). (11) 

Unfortunately, the divergence of this current is not in 
general zero, and the current does not vanish for a 
fictitious potential A= Vx- These defects can be blamed 
on the nonlocality of the reduced Hamiltonian, because 
of which the current is not conserved. They are removed 
for example in the more elaborate "generalized random 
phase approximation"8 (GRPA) and equivalent ap
proaches.10 In these the whole of the Hamiltonian is 
allowed for, in an approximate but gauge-invariant 
way. The result (11) is then replaced by, in momentum 
space and for small k (London limit), 

</,(k)>=PU„ -jA, (k). 

Here the offending longitudinal part has been removed. 
In the GRPA the Meissner effect is gauge invariant 

and matrix elements of the current obey the continuity 
equation. An important sum rule9 (which follows in 
general from commutation rules and continuity) is then 
respected. This proves very relevant to our problem. 
Note, however, that we are not committed in the follow
ing reasoning to the details of that particular approx
imation, the GRPA, which has difficulties of its own.11 

Consider the current induced by a fictitious static 
field A= Vx- Its divergence should certainly vanish. If 
we substitute A=Vx in (10), partially integrate with 
respect to y, and use the continuity equation 

(n\V'}\m)=— (n\p\m) 
= —i(En—Em)(n\p\tn), 

(13) 

we obtain the identity 

0=pVM*)-£CEo-£„) 

X <0|p(x)|»>^|y<fyp(y)x(y)|o^ 

+^o|y"<*yp(y)x(y)|«)<«|p(x)|0>) 

10 V. Ambegaoker and L. Kadanoff, in Notes on the Many-Body 
Problem, edited by C. Fronsdal (W. A. Benjamin, Inc., New 
York, 1962), pp. 66-84. Other literature can be traced from ref
erences in this paper. 

" T h e quantity G(x— y)— p8(x— yj-f-p2, which should equal 
(^t(x)^t(y)^(y)^(x)>, does not in the GRPA come out positive 
for small |x—y|. 
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From this follows the sum rule 

E(£o-£n){<0|p(x)|n><»|P(y)|0> 

+ <0|p(y)|»X»|pGO|0» = pV»S(x-y). (14) 

A weight function a is denned by 

»(£,k)=E<0|p(0)|»><»|p(0)|0> 

X5(£„-Eo-£)5(P„-k)(27r)3, (15) 

where P„ is momentum of state n. Noting that c will not 
depend on the sign of k, the sum rule (14) takes the form 

Jo 
dEEa(E,k) = ±k2p. (16) 

The result (16) is relevant for the correlation function 
because 

/ 
J 0 

dEff(E,k) = G(k). (97) 

If for momentum k the spectrum of excitations is 
bounded below by some £(k), from (16) and (17) 

0^G(k)^k2p/2E(k). 

Therefore a sufficient condition for 

is that 
5 (k ) -»0 as k - > 0 

k2/E(k)-*0 as k ->0 . 

(18) 

(19) 

This could be effected physically by the application of 
an external field. It is plausible that for the density at 
any point a variation dp, which is uniform over a suffi
ciently large neighborhood is equivalent to a variation 
of tx for the complete system: 

In the GRPA the lowest excitations for small k are the 
sound waves, for which £(k)« |k| . Thus condition (19) 
is met and the result (18) expected from (6) is obtained. 

Actually it is somewhat careless to expect (18) at zero 
temperature on the basis only of (6) at 7V0 and the 
assumption that dp/dp remains finite at T=0. We have 
now taken the limit T —» 0 before the limit k —> 0, and 
the derivations in either Sec. 2 or Sec. 6 do not directly 
apply. It is easy to think of functions for which the 
order of limits would be important. Thus, even when 
(6) is accepted, some special discussion of the case T=0 
is necessary, such as that given here. 

VI. NONZERO TEMPERATURE 

Finally we demonstrate (6) from the continuity equa
tion, and some plausible assumptions, in the case of 
finite temperature. Here the total system is represented 
by a grand canonical ensemble, with density operator 

M= exp[ -0 (#- / iA) ] /Tr exp[-/3(£T-/iA7)], 

where /3=l/&7\ It is convenient to consider small local 
variations of p: 

M^exp-lH-pN-jdy8p(y)p(y)}/ 

Tvexp-pfH-ixN-- dy dpp\ 

dp r 5<p(x)> r a(p(x)> 

dp. J aM(y) J 5M(y) 
(20) 

This assumption, that the equation of state in a suffi
ciently large region is independent of conditions outside 
that region, is already implicit in the argument of Sec. 2. 
No additional assumption about number fluctuations is 
made here. 

Consider the identity 

0=Tr [p(x)-<p(x)>] 

Xexp-/3j • /<*yj*(y)p(y) fl-My/*(y)p(y) • (21) 

Functional differentiation with respect to p,(y) yields 

^Ca(p(x))/8M(y)]=<p(x)p'(y))-(p(x)>(p(y)>. (22) 

In classical statistics, where there are no commutation 
difficulties, p'(x) would simply equal p(x). Combining 
(1), (20), and (22), the theorem would be proved. There 
is no special appeal here to continuity, but continuity 
is anyway inherent in classical Hamiltonian particle 
mechanics. In quantum mechanics, because p(x) and H 
do not commute, 

1 rt 
0 ' (y)=- / die~tHp(y)e*H. 

0Jo 
(23) 

With the obvious definition of G\ one has 

dp f 
kT—= dxG'(x). 

dp. J 

This is not yet the result required. 
Let us express the quantities (p (x)p' (y)) and (p (x)p (y)) 

in terms of the matrix elements of p between the eigen-
states | n) of energy and momentum: 

With 
P|«>=Pn |»>, (ff-/itf)|n> = E»|n>. 

<rGE,k)= E ^jr*<»|p(0)|w><«i|p(0)|»> 

X5(£m -£„-£)5(Pm -P„-k)(27r) 3 , (25) 

one finds 

G'(k)-G (k) = JdE a (£,k) (-
t\-e+* 

— 1 
I3E 

(26) 

At high temperature (the classical case) /3 —> 0 and Gf 
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becomes equal to G. We have to show that this is true 
in general when k —* 0. That is that for decreasing k the 
weight function a is restricted to energies decreasing 
to zero. 

Consider now the current correlation 

^ , ( x ~ y ) = <j,(x)>(y)). (27) 

From the continuity equation we have 

d d ydp(x)dp(y)\ 
£Ux-y )=< ), 

dXpdyr, \ dt dt / 

where 

i ^ , ( k ) = - IdE &a(E,k). (28) 
Assuming that D^ has finite range, so that J5M„ is finite 
at k=0, we have 

lim dEE?<r(E,k) = Q, 
k-o J 

i.e., for small k the spectral function is concentrated at 
small E. Assuming that G(x) also has finite range, 
we obtain 

lim / dEa(E,k)= J G(x)dx=finite constant. 

From (29) and (30), and because a is positive, 

lim dEa(E,k)( 1 1 = 0, 
*^J \ fiE I 

lim [5'(k)-G(k)]=0. 
k-^0 

This is the required result. 

VIL CONCLUSION 

It has been seen that the failure of the BCS theory to 
give the expected result is related to other defects of that 
theory, notably the lack of current continuity. Moreover 
a derivation of the standard theorem has been outlined 
which seems to rest on weaker and more explicit assump
tions than the usual version. Even those who cannot 
doubt the usual reasoning may attach some value to the 
new account, because it shows that in any model not 
satisfying the theorem one or more of several other 
expected properties cannot be realized. Neither the new 
nor the old accounts apply directly at zero temperature; 
the behavior there has been related separately to the 
excitation spectrum of the ground state. 
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